Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth.
نویسندگان
چکیده
PURPOSE Enzalutamide (ENZ) is a potent androgen receptor (AR) antagonist with activity in castration-resistant prostate cancer (CRPC); however, progression to ENZ-resistant (ENZ-R) CRPC frequently occurs with rising serum PSA levels, implicating AR full-length (ARFL) or variants (AR-Vs) in disease progression. EXPERIMENTAL DESIGN To define functional roles of ARFL and AR-Vs in ENZ-R CRPC, we designed 3 antisense oligonucleotides (ASO) targeting exon-1, intron-1, and exon-8 in AR pre-mRNA to knockdown ARFL alone or with AR-Vs, and examined their effects in three CRPC cell lines and patient-derived xenografts. RESULTS ENZ-R-LNCaP cells express high levels of both ARFL and AR-V7 compared with CRPC-LNCaP; in particular, ARFL levels were approximately 12-fold higher than AR-V7. Both ARFL and AR-V7 are highly expressed in the nuclear fractions of ENZ-R-LNCaP cells even in the absence of exogenous androgens. In ENZ-R-LNCaP cells, knockdown of ARFL alone, or ARFL plus AR-Vs, similarly induced apoptosis, suppressed cell growth and AR-regulated gene expression, and delayed tumor growth in vivo. In 22Rv1 cells that are inherently ENZ-resistant, knockdown of both ARFL and AR-Vs more potently suppressed cell growth, AR transcriptional activity, and AR-regulated gene expression than knockdown of ARFL alone. Exon-1 AR-ASO also inhibited tumor growth of LTL-313BR patient-derived CRPC xenografts. CONCLUSIONS These data identify the AR as an important driver of ENZ resistance, and while the contributions of ARFL and AR-Vs can vary across cell systems, ARFL is the key driver in the ENZ-R LNCaP model. AR targeting strategies against both ARFL and AR-Vs is a rational approach for AR-dependent CRPC.
منابع مشابه
Cancer Therapeutics Insights NF-kB2/p52 Induces Resistance to Enzalutamide in Prostate Cancer: Role of Androgen Receptor and Its Variants
Resistance of prostate cancer cells to the next-generation antiandrogen enzalutamide may be mediated by a multitude of survival signaling pathways. In this study, we tested whether increased expression of NF-kB2/p52 induces prostate cancer cell resistance to enzalutamide and whether this response is mediated by aberrant androgen receptor (AR) activation and AR splice variant production. LNCaP c...
متن کاملNF-kappaB2/p52 induces resistance to Enzalutamide in Prostate Cancer: Role of androgen receptor and its variants
Resistance of prostate cancer (CaP) cells to the next generation anti-androgen, Enzalutamide, may be mediated by a multitude of survival signaling pathways. In this study we tested whether increased expression of NF-κB2/p52 induces CaP cell resistance to Enzalutamide and whether this response is mediated by aberrant androgen receptor (AR) activation and AR splice variant production. LNCaP cells...
متن کاملCancer Biology and Signal Transduction NF-kB2/p52:c-Myc:hnRNPA1 Pathway Regulates Expression of Androgen Receptor Splice Variants and Enzalutamide Sensitivity in Prostate Cancer
Castration-resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signaling. Alternative splicing of the AR to generate constitutively active, ligand-independent variants is one of the principal mechanisms that promote the development of resistance to next-generation antiandrogens such as enzalutamide. Here, we demonstrate that the splicing factor heterogeneous nuclear RNA...
متن کاملCancer Therapy: Preclinical Niclosamide Inhibits Androgen Receptor Variants Expression and Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer
Purpose: Enzalutamide, a second-generation antiandrogen, was recently approved for the treatment of castration-resistant prostate cancer (CRPC) in patients who no longer respond to docetaxel. Despite these advances that provide temporary respite, resistance to enzalutamide occurs frequently. Androgen receptor (AR) splice variants such as AR-V7 have recently been shown to drive castration-resist...
متن کاملNF-κB2/p52:c-Myc:hnRNPA1 Pathway Regulates Expression of Androgen Receptor Splice Variants and Enzalutamide Sensitivity in Prostate Cancer.
Castration-resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signaling. Alternative splicing of the AR to generate constitutively active, ligand-independent variants is one of the principal mechanisms that promote the development of resistance to next-generation antiandrogens such as enzalutamide. Here, we demonstrate that the splicing factor heterogeneous nuclear RNA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2015